

Octopus Deploy: The importance of Continuous Delivery 1

Contents

Introduction 2

Part 1: What is Continuous Delivery? 3

Principles of Continuous Delivery 5

Build quality in 6

Work in small batches 8

Computers repeat, humans problem-
solve

10

Relentlessly improve 11

Everyone is responsible 13

Summary 14

Continuous Delivery practices 16

Loosely coupled architecture 18

Continuous Integration and trunk-based
development

19

Continuous testing 20

Database change management 21

Deployment automation 24

Monitoring and observability 26

Summary 27

Part 2: The importance of continuous
delivery

28

Continuous feedback 29

Tangible benefits 32

Failure demand 35

The people factor 36

Return on investment 38

Case study 39

Benefits reported 39

Obstacles 41

Summary 42

References 44

Further reading 45

Octopus Deploy: The importance of Continuous Delivery 2

Introduction

Continuous Delivery is a software engineering approach that uses interrelated
principles and practices to ensure software is always in a deployable state. The
idea is to reduce the cost, time, and risk of delivering changes so you can deploy
more often and check you're heading in the right direction. By testing your
product and feature ideas sooner, you can avoid spending money on building
features unimportant to your customers and move your focus elsewhere.

By reading this white paper, you'll understand:

The principles and practices of Continuous Delivery.
How Continuous Delivery's technical capabilities are fundamental to a
successful DevOps adoption.
The benefits of achieving high performance, explaining why Continuous
Delivery is so important.

This white paper has two parts:

Part 1: What is Continuous Delivery?
Part 2: The importance of Continuous Delivery.

Part 1 defines Continuous Delivery, its principles, and necessary technical
capabilities. You need to adopt and master these principles to achieve the
benefits described later in the white paper.

Part 2 highlights the benefits of Continuous Delivery. It explains how Continuous
Delivery is statistically linked to high performance in software delivery, and how it
helps organizations meet and exceed their goals.

If you're familiar with Continuous Delivery and DevOps, you can read Part 1 as a
refresher or skip to Part 2.

Octopus Deploy: The importance of Continuous Delivery 3

Part 1: What is Continuous Delivery?

Continuous Delivery is five principles and seven technical practices that allow you
to deploy changes safely, quickly, and sustainably. When you design your process
around Continuous Delivery, you can deploy changes on-demand with high
confidence.

To do this, you need to identify all activities needed to make your software ready
to go and use them to build a deployment pipeline. A deployment pipeline is all the
steps needed to get a code change from a developer's machine to the production
environment. Your deployment pipeline may look like the example below, which
shows a step sequence separated by approvals. These steps and approvals
might be manual or automated, but it's essential to make them all visible when
you map your pipeline.

Sample deployment pipeline

In the example, the developer commits their code change and, on a successful
build, the pipeline automatically moves to the next phase - an automated
acceptance test pack. If the acceptance tests pass, a tester can approve the
change into the manual testing environment, where they do exploratory and
usability tests. The change continues along the deployment pipeline, moving to
the next stage each time it passes the last.

Octopus Deploy: The importance of Continuous Delivery 4

You may have one deployment pipeline for your whole application, or multiple
pipelines handling different components, modules, or services.

You might also hear the term Continuous Deployment, which is when every
change deploys to production instantly. Continuous Delivery describes how
you do this, but doesn't need you to deploy every software version
immediately.

To understand Continuous Delivery in more depth, you need to know about the
principles and practices involved. We cover these next, along with information on
how Continuous Delivery is a crucial part of DevOps.

Octopus Deploy: The importance of Continuous Delivery 5

Principles of Continuous Delivery

You can use the five principles of Continuous Delivery to understand the reasons
for the practices. They're based on well-established lessons learned in software
and manufacturing. If you already know about Lean Software Development or the
Toyota Production System, you'll recognize their influence here.

The principles are:

1. Build quality in
2. Work in small batches
3. Computers repeat, humans problem-solve
4. Relentlessly pursue continuous improvement
5. Everyone is responsible

You can find out more about each principle below. The example deployment
pipeline used in the diagrams will update to show the affect each principle has,
such as shorter lead times or earlier defect detection.

Octopus Deploy: The importance of Continuous Delivery 6

Diagram illustrating the delay between a defect and its detection

Build quality in

To build quality in, you must design your deployment pipeline to detect faults.
When you find an issue, you should update your deployment pipeline to catch it
earlier, if you can.

In the manufacturing industry, production lines had inspection processes that
reviewed finished products and rejected those not meeting quality standards. The
delay between completing a defective step and inspection at the end of the
production line often resulted in many faulty products. Other workstations may
have taken steps after the problem's introduction, meaning scrapped finished
products and wasted raw materials.

Octopus Deploy: The importance of Continuous Delivery 7

The lean manufacturing movement realized you could solve issues faster and
with less waste if production lines could immediately spot mistakes. Factories
required each downstream process to raise a problem to the previous operation
as soon as it detected defects. If necessary, a worker could stop the production
line to allow everyone to crowd the issue and resolve it. No downstream work
would happen on a faulty product, and factory workers would scrap fewer items.

Traditional software development methods worked the same as older production
lines. The quality assurance process was the last thing to happen to the software
before deployment to production. The software version tested would contain
hundreds, or even thousands, of changes. By finding problems earlier in the
deployment pipeline, there are fewer changes that could be responsible for the
fault, and fixes can take place before new work starts.

Building quality in results in detecting problems earlier in the deployment pipeline.

Earlier detection of defects

Octopus Deploy: The importance of Continuous Delivery 8

Work in small batches

When you work in small batches, you reduce risk, get feedback faster, and find it
easier to fix faults. If a small batch introduces a catastrophic change, you can
discard the changes to return to a good state without losing much of your total
investment.

In phased software development, teams passed large batches to the next stage.
After weeks or months of work, developers would hand the software to a test
team for validation. A problem found during testing might have been introduced
months before detection. You could only deploy the software at the end of this
long development and test cycle, after time spent fixing all the issues found.
Organizations often try to manage the failures of large batches by introducing
tighter controls, which slows the deployment pipeline and results in yet larger
batches.

Each change you make to the software introduces risk. There may be a bug in the
change, or the change might not be useful to users. When you batch changes,
risk increases at a rate higher than the sum of changes. So two commits in a
batch are more risky than the same two commits processed end-to-end one after
the other. Even if you carefully test the batch many times, you only reduce
functional risk - you don't reduce the risk of users or customers rejecting the
change.

If you work to a calendar-based cycle, such as monthly deployments, the batch
size will increase if:

The team increases its delivery rate
The team increases in size
The date moves further out because of a problem

Octopus Deploy: The importance of Continuous Delivery 9

With large batches, each handover is more expensive. The natural response to
these costly handovers is to do them less often to reduce expense, but this
makes each hand-off cost even more. The solution is to increase the frequency as
this will make the handovers less expensive. If you execute the whole deployment
pipeline for every change, you flatten the risk to a single change. And if the
change is bad, you can revert it to get back to a good state.

Working in small batches reduces time spent on each phase and results in faster
feedback.

Small batches reduce lead times

Octopus Deploy: The importance of Continuous Delivery 10

Computers repeat, humans problem-solve

Humans and computers have different strengths. Computers can perform
repetitive tasks consistently. They don't get bored or distracted and make
mistakes. Humans are excellent problem-solvers who can generate innovative
ideas. You should use this difference in your process design. Wherever you find a
human performing a repetitive task, change it so a computer does the job and
frees up the human to do more valuable work. For example, you should use
computers to run standard regression test packs so testers have more time for
exploratory and usability testing.

Where you can't fully automate a task, you can still find ways for computers to
assist the work. For example, if you automatically generate a report on changed
components, testers can focus their efforts on the right area of the software.
Reducing the human effort of a manual step can improve human-decision
accuracy, and free their time for more valuable activities.

Automation applies to more than testing. There are many other repeated tasks
you can automate with high accuracy. For example, creating infrastructure for the
application to run on.

As you seek to increase automation, look for opportunities to gather information
for human approval and ways to set up fully automatic, machine-checked
approvals.

Automating routine work plays to the strengths of machines and frees up time for
people to do more valuable work.

Octopus Deploy: The importance of Continuous Delivery 11

Use human and computer strengths

Relentlessly improve

Using the three principles of quality, batch size, and automation, you can find
almost limitless areas for improvement. Continuous Delivery asks you to
relentlessly pursue continuous improvement, which means working out how to:

Reduce your batch size
Shorten your lead time
Detect problems sooner
Ensure you divide tasks correctly between people and machines

Octopus Deploy: The importance of Continuous Delivery 12

When you introduce Continuous Delivery, you're likely to make big gains in a
shorter time. Once you've reduced your lead time from months to days, improving
it by a few more minutes might not seem worthwhile. However, you can amplify
small improvements by increasing how often you execute the tasks. Small but
regular gains are where your organization can find an advantage over your
competition.

In a survey conducted by Octopus Deploy in 20131, deployment automation
proved to hugely reduce deployment times and increase deployment frequency.
Teams commonly moved from monthly deployments to daily deployments. While
a fifteen-minute improvement is a modest gain on a monthly deployment, the
payback increases to more than five hours per month when you deploy daily.

Relationship between deployment speed and frequency

You will find similar results elsewhere in your deployment pipeline, where
seemingly small improvements become increasingly valuable as you deliver
software more often.

The relentless pursuit of improvement drives the previous three principles and
should result in fewer failures and shorter feedback times.

https://download.octopusdeploy.com/files/whitepaper-automated-deployment-octopus-deploy.pdf

Octopus Deploy: The importance of Continuous Delivery 13

Continually find opportunities to improve

Everyone is responsible

Driving all previous principles is the most general cultural principle: everyone is
responsible. There is no room in Continuous Delivery to compartmentalize
problems. Where there's an issue, everyone involved in software delivery should
share the responsibility for the resolution. Team members across all disciplines
should work together to deliver software and achieve the organization's goals.
Judge all improvements by their impact on the whole system.

Octopus Deploy: The importance of Continuous Delivery 14

To create a culture that aligns with this principle, you must embody the spirit of
psychological safety to maximize learning. When something goes wrong, people
need to feel comfortable speaking up quickly and honestly, which doesn't happen
when a culture focuses on assigning blame. You also need to fix any reward
structures that discourage collaboration. Suppose you reward developers for the
number of features they deliver and testers for the bug numbers they find. In that
case, each team member has an incentive to optimize for only their work, which
will negatively impact software delivery and prevent your organization achieving
its goals.

Rather than forcing everyone to take responsibility, management needs to nurture
an environment of collaboration and ensure there are no incentives that
discourage it.

Summary

To recap, the five principles are:

1. Build quality in
2. Work in small batches
3. Computers repeat, humans problem-solve
4. Relentlessly pursue continuous improvement
5. Everyone is responsible

The principles are designed to help create a process and a culture that supports
Continuous Delivery. The principles are tightly related to each other.

The fourth principle, relentless improvement underpins the first three of quality,
small batches, and automation. This cycle amplifies the behaviors you need to
constantly improve as part of your software delivery capability.

Octopus Deploy: The importance of Continuous Delivery 15

The five principles are related and cyclical

Many of your practices must become continuous to drive Continuous Delivery.
You need to lower the cost of the deployment pipeline to ensure the cost to
deploy a version of software is not a factor in your deployment decisions. You
need technical skills and a strong culture that encourages collaboration and
learning.

Now the principles are clear, you're ready to tackle the technical practices
described in the next section.

Octopus Deploy: The importance of Continuous Delivery 16

Continuous Delivery practices

The State of DevOps Report (started 2011) studies adoption and how practices
link to organizational performance. DORA (DevOps Research and Assessment)
uses academic techniques to research and analyze capabilities driving high
software delivery performance and positive organizational outcomes. The CD
Foundation commissions surveys and reports to track Continuous Delivery
adoption and impact.

The DORA research finds that Continuous Delivery depends on seven significant
capabilities:

1. Continuous Integration (CI)
2. Continuous testing
3. Monitoring and observability
4. Loosely coupled architecture
5. Database change management
6. Deployment automation
7. Trunk-based development

The structural equation model2 diagram below shows the predictive relationship
between:

Specific technical capabilities
Continuous delivery
Other drivers of technical and organizational success

https://www.devops-research.com/models.html

Octopus Deploy: The importance of Continuous Delivery 17

The DORA structural equation model

A predictive relationship uses a technique called 'inferential predictive
analysis' for testing. This is a scientific approach used to test theories in real-
world situations, rather than experimental models. DORA uses this technique
to discover and test relationships shown with arrows in the structural
equation model above.

We explore the technical capabilities in more detail below, in the order you might
see within your deployment pipeline. You can find the benefits reported in the
various studies in Part 2.

Octopus Deploy: The importance of Continuous Delivery 18

Loosely coupled architecture

2017's State of DevOps report found that architecture is Continuous Delivery's
biggest predictive indicator. To be loosely coupled architecture, your application
should be made of small, independent components with their own deployment
pipeline. You can deliver faster because you only need to run the deployment
pipeline when you change a component. The stages will take less time because
there is less code to build and test in a component than there is in a whole
system.

You also need to carefully manage dependencies between components and the
teams that build them. This helps avoid an architecture that appears decoupled
yet acts like a single large application. If you find a change triggers cascading
updates through your components, dependencies are likely to be the problem.
Equally, if a change to one component needs tests to cover other components,
your architecture may be too tightly coupled.

To achieve the goals of a loosely coupled architecture, you need to align your
team and architecture. There is little benefit to having many active components
maintained by a single team or many teams tripping over each other. Alignment
issues caused by an imbalance between people and architecture leads to a build
up of undeployed changes, visible in your lead times.

Conway's Law is an adage that says that a system's design will mirror the
communication structure of the organization that created it. Both MIT and
Harvard Business School found strong evidence to support this 'mirroring
hypothesis'. This is good if you intentionally design your communication
structure, as it will likely result in the correct architecture. Re-designing team
structure to drive architecture is the 'inverse Conway manoeuvre'.

Octopus Deploy: The importance of Continuous Delivery 19

Continuous Integration and trunk-based development

Continuous Integration means merging changes into version control often.
Usually every few hours but at least once a day. After running the build and test
cycle locally, developers should push their working version into the trunk (or main
line) in version control. For each of these commits, your deployment pipeline
should automatically run the build process. Your build should:

Compile the code
Run a set of static analyzers
Run a set of fast automated tests that will reveal any serious problems you
must fix immediately

The result of your Continuous Integration process should be a validated package
you use throughout your deployment pipeline. Your package should be canonical,
which means using the same package every time you deploy the software version
(rather than the same code re-built for each environment).

Trunk-based development was always the intention of Continuous
Integration, but the definition is now a separate capability based on the
analysis collected in the State of DevOps Report.

Trunk-based development is where you commit code directly to the main
branch in version control. The analysis by DORA found benefits still apply
providing you use no more than three branches, and they're merged into the
main line in less than a day.

Octopus Deploy: The importance of Continuous Delivery 20

Continuous testing

Your deployment pipeline should allow testing for every software version. In your
pipeline's earlier stages, automate tests to be reliable and fast so developers can
get near-immediate feedback. Your developers should write and maintain these
tests. Externally written tests don't predict performance in Continuous Delivery.

You should divide your tests into sets that allow fast and automated packs to run
before longer-running or manual tests. Move individual tests to the earliest stage
possible without making that stage take too long to run. With this design, you find
out as early as possible when you have a bad version of your software and avoid
wasting time running slower and manual tests. You may also be able to run some
test packs in parallel to reduce your overall lead time.

Types of testing

As well as tests that check intended functionality, you must also test component
security and performance. For example, you can run security scans and response
time tests as part of the deployment pipeline. You can even include tests that
check your infrastructure and configuration.

Where you have long-running characterizing tests that check application and
resource use over time, they should run outside the deployment pipeline. These
tests should form part of your monitoring and alerting strategy. For example, it's
common to use real-user monitoring to track response times long-term, and your
monitoring tools should alert you to sudden performance changes and
degradation over time.

Octopus Deploy: The importance of Continuous Delivery 21

Realistic test environments

You should test software in a production-like environment as this makes the
production deployment more likely to succeed. If your pre-production
environments don't resemble the live environment, configuration differences may
cause the production deployment to fail.

A crucial part of continuous testing is test data management. If the data used
for tests is unstable, you will get inundated with false failures. You should
automate test data creation to ensure tests run against a consistent data set
every time.

You should always try to find errors with the fastest test set that can detect the
problem. If a slow integration test finds a bug, try to design a faster test that
would detect the issue earlier.

Database change management

During a deployment, it's common for two versions of the application to run
against the database:

The live version
The new version that you are putting live

Even with one application running against one database, there will be a short
window where a newer database version runs alongside an older application
version. In more complex setups, there could be a mix of application versions
running against the same database. To support this, we need to put in place a
database change management strategy.

Octopus Deploy: The importance of Continuous Delivery 22

There are many nuclear database refactoring3 techniques that allow you to
perform multi-step safe refactorings. There are also two general approaches to
database change management:

Create two databases
Decouple database changes

Create two databases

With the two database strategy, you have a version of the database for each
application version. During the deployment of a new version, you put the
production database into a read-only state and take a backup. You then use the
backup to populate a new database, which you can upgrade with all the changes.

The new application version connects to this updated database. So by switching
traffic over to the new application version, you move all traffic away from the old
application and database. Once all traffic flows to the new application and
database, you can decommission the previous version.

To successfully use the database-per-version strategy, you must automate the
processes and ensure each step is fast:

Backup
New database creation
Upgrades
Pre-flight checks
Traffic management

https://www.databaserefactoring.com/

Octopus Deploy: The importance of Continuous Delivery 23

Decouple database changes

You can decouple the dependency between the database and application using
the expand and contract pattern. This allows you to add new items to the
database as additions don't impact the running application. However, you can
only delete an item if no running version of the application depends on it.

Breaking changes must be carefully handled to allow previous application
versions to continue using the old field, and for newer versions to use the new
field. For example, we might want to change a column name from 'surname' to
'lastname' to make it consistent with terminology used in the organization. The
process to rename the column is below, with each step deployed to production
before moving to the next:

1. Add a new 'lastname' column to the database and create a synchronization
trigger to ensure 'lastname' updates whenever 'surname' changes

2. Deploy!
3. Write a migration to copy data from 'surname' to 'lastname'
4. Deploy!
5. Update the application to use 'lastname' and remove all references to

'surname'
6. Deploy!
7. Delete the synchronization trigger and 'surname' column, to prevent its use

by mistake (instead of 'lastname')
8. Deploy!

You should include data migration as part of your deployment pipeline. If you
need to plan a long-running migration, consider using a runtime data migration
strategy or a long-running process to update the records.

A runtime data migration strategy moves data at the point of access. For
example, when retrieving a customer record, the last name would update if the
field is empty. This allows a gradual population of most data, but the old surname
column must remain until all records update.

Octopus Deploy: The importance of Continuous Delivery 24

A long-running migration process could be a throttled update script. This would
detect records with a last name that isn't the same as the surname and update a
few at a time. This allows all records to update without impacting application
responsiveness for users.

Deployment automation

Deployment automation allows frequent deployments that are both reliable and
repeatable. Using the same automatic process to deploy the software to all
environments, you can test the deployment process as often as the application
code. You should also use deployment automation beyond software packages.
For example, automating environment creation and infrastructure based on
definitions stored in the same version control repository as the application.

When you use an automated deployment process, you can make sure the same
steps happen in the right order each time you deploy. Crucially, you can guarantee
you miss no steps.

This means you can allow self-service deployments to different environments,
rather than depend on another team to push changes. There are many observable

features of good deployment automation4, such as:

Repeatability
Recoverability
Visibility
Auditability

There are also several deployment patterns5 that can help reduce downtime.
These include rolling deployments, blue/green deployments, and canary
deployments.

You can decouple your deployments (putting a software version live) from your
releases (making a feature available) using techniques such as feature flags.

https://octopus.com/blog/ten-pillars-of-pragmatic-deployments
https://octopus.com/blog/common-deployment-patterns-and-how-to-set-them-up-in-octopus

Octopus Deploy: The importance of Continuous Delivery 25

Feature flags, or feature toggles, allow you to make a feature available
independently of deployments. You can use them to:

Remove a problematic feature without having to redeploy an older
application version.
Make a feature available to subsets of your users, either as part of a beta
program or for multivariate or A/B testing.
Gracefully degrade performance by temporarily removing a resource-
intensive feature when there is high traffic or infrastructure issues.

In a survey conducted in 20131, organizations found automating their
deployments with Octopus allowed faster and more frequent deployments.
Organizations using deployment automation were five times more likely to
complete deployments in under thirty minutes. And more than eleven times more
organizations reported daily deployments after introducing automation.

Capability Manual deployments Automated deployments

Deployments under 30 minutes 15% 86%

Deployments over 2 hours 45% 4%

Daily deployments 5% 59%

Monthly deployments 61% 8%

To break this down, for a team member responsible for a manual deployment that
takes eight hours:

A monthly deployment takes 5% of their annual working hours
Weekly deployments would take 18% of their time
Daily deployments would be 92% of their role

Deployment automation is self-funding and essential for increasing deployment
frequency.

https://download.octopusdeploy.com/files/whitepaper-automated-deployment-octopus-deploy.pdf

Octopus Deploy: The importance of Continuous Delivery 26

Monitoring and observability

Monitoring first makes information from many sources visible in the same place,
then allows you to categorize and learn from the data. You can use what you
discover to design automated alerts that sound an alarm when something isn't
right. You can check infrastructure properties, such as resource use, and also
track specific application features and business metrics.

By including business metrics in your monitoring and alerting strategy, you can
tell when a deployment or feature release affects your organization's goals. You
can respond to business metrics the same way you respond to downtime. For
example, a hotel might detect and react to a drop in average booking value, which
might indicate a pricing error or rogue voucher code.

You can use business monitoring metrics alongside canary releases or
multivariate testing to compare performance of different software versions.

We've listed some monitoring metrics you may not have considered below:

The number of deployments to production
Build times
Test run times
Use per feature
Conversion rates
Financial data
Cloud costs
Complaint numbers

If you bring all these metrics into a single location or tool, you can match them to
specific software versions. You could quickly respond to changes, such as a
version causing more complaints, or an unexpected rise in cloud costs. When you
discover the relationship quickly, you can learn what works and what doesn't.

Octopus Deploy: The importance of Continuous Delivery 27

Summary

The technical capabilities of Continuous Delivery are not always easy to put in
place. In some cases, they need big changes to how you work. However, you can
start small and iterate your way to success. Unlike other software delivery
approaches, large-scale research and statistical analysis backs the benefits of
that hard work, and proves the predictive relationship between them.

Each practice contributes to short feedback cycles, so you can run your
deployment pipeline more often and release software more frequently. This links
back to the Continuous Delivery principles discussed earlier.

Now we have a clear definition of Continuous Delivery, we can look at its
importance for teams and organizations.

Octopus Deploy: The importance of Continuous Delivery 28

Part 2: The importance of continuous
delivery

Prior software delivery methods were based on experiential evidence, themselves
based on practices working for particular teams. This was an improvement over
processes and frameworks based on theoretical models about what should work.
Continuous Delivery and DevOps take this further, with extensive research and
theory-driven scientific analysis. This is the highest bar taken for assessing the
effectiveness of a software delivery approach so far.

When you read the benefits in this part of the white paper, they're backed by
research from the Continuous Delivery Foundation, DORA, and other research-
backed surveys. Instead of single-case studies, this research represents data
collected from thousands of organizations.

Published by Report Respondents

DORA The State of DevOps Report More than 32,000

CD Foundation The State of CD Report More than 19,000

In Part 1, we described the technical capabilities in detail. This is important
because the research relates to a specific Continuous Delivery definition. The
principles and practices have an amplification effect on each other. As you adopt
more of them, you are more likely to get the benefits described below.

Octopus Deploy: The importance of Continuous Delivery 29

Continuous feedback

Continuous Delivery has many technical elements, but they all help shorten the
feedback cycle. This lets you learn faster and change direction sooner, if you
need to. This gives you a competitive advantage that can help you meet or
exceed your organization's goals.

Where traditional software delivery methods try to manage risk by deploying less
often, research shows this has the opposite effect. The deployment itself isn't the
risk source, it's the changes introduced. In particular, the more changes you make
before you deploy, the higher the risk. We share the statistics for this later on.

By increasing deployment frequency, each batch has fewer changes and less risk.
This applies across all risk factors, like service outages, security, and quality. So
you must bring these practices into the deployment pipeline and make them
continuous.

The diagram below shows Continuous Delivery driving constant feedback. This
has a lowering effect on risk, lead times, rework, stress, and burnout. It also
increases motivation, stability, time spent on new work, and commercial success.

Octopus Deploy: The importance of Continuous Delivery 30

Continuous feedback

Receiving feedback is a layered and non-linear process. If you place the code and
test cycle in the center of a diagram, the feedback from each extra step wraps in
a series of concentric circles, like an onion.

Many of these feedback layers are only internal indicators. Real feedback comes
when the feature is available to users. These intermediate feedback loops are
useful but can never confirm the feature will be a success. This is one reason you
must shorten the lead time between having an idea and showing it to your
customers.

Octopus Deploy: The importance of Continuous Delivery 31

The layers of feedback form an onion

When you use large batches, the genuine feedback from the outermost loop
takes longer to arrive. When feedback's delayed, you might start treating internal
feedback as a substitute for the real thing. When you make decisions based on
proxy feedback, you increase the risk your users will reject the feature.

You need to make sure you get rapid and genuine feedback, and that usually
involves proving you've solved a problem for a customer in a valuable way.

Octopus Deploy: The importance of Continuous Delivery 32

Tangible benefits

The State of DevOps Report categorizes organizations based on an assessment
of their capabilities as described in Part 1. Based on this, they rate each
organization as low, medium, high, or elite performers. This allows comparison of
the four groups in the outcomes associated with the different levels of
Continuous Delivery and DevOps adoption.

An interesting finding in the report is the medium group under-performs in
some areas as they work to introduce the principles and practices. If you start
in the low-performance category, prepare for a shaky start that pays off once
you hit high performance.

Think of yourself as an aspiring Olympic athlete. You must swap the
techniques that worked at regional level with high-performance techniques
that slow you down as you first practice them. Once you master the new
techniques, you can hit your personal best and take a shot at the podium.

We compare the low-performance group to the high performers for the following
statistics. If you manage to meet the elite performance level, you can expect even
greater benefits.

High performers are twice as likely to meet or exceed the organization's goals,
such as productivity, profitability, and market share. They're also twice as likely to
exceed non-commercial goals like quality and customer satisfaction. People
working for high performers are 2.2x more likely to recommend working at the
organization. They also spend eleven percentage-points more time on new work.

In 2014, market analysis found that high performers had 50% higher market cap
growth than low performers.

Octopus Deploy: The importance of Continuous Delivery 33

Find a comparison of high versus low performers below, with high performers
excelling in all measures. Increased deployment frequency is a key factor in these
differences, driven by Continuous Delivery and its technical capabilities.

High performers vs. low performers

The State of Continuous Delivery Report6 (compiled by developer economy
analyst SlashData™ for the Continuous Delivery Foundation) echoes the contrast
between high and low performers. The report, found that delivery speed and
stability go hand-in-hand.

Though it's intuitive to believe that speed and stability represent a trade-off,
delivery speed in fact predicts stability. The high performers for lead time were
five times more likely to excel in stability than teams with long lead times. The
table below shows lead times along the top and time to restore service on the
left.

https://cd.foundation/reports/

Octopus Deploy: The importance of Continuous Delivery 34

> 1 month 1-4 weeks 1-7 days < 1 day

> 1 week 52% 28% 17% 8%

1-7 days 19% 24% 21% 16%

1 hour to 1 day 23% 37% 43% 46%

< 1 hour 6% 11% 19% 29%

Highlighted cells are five percentage points above other performance segments.

In this table, you find speed and stability together. Slowing delivery to increase
stability is a myth, as slow delivery is more likely to result in unstable systems.

Octopus Deploy: The importance of Continuous Delivery 35

Failure demand

In Freedom from Command and Control, John Seddon describes a concept called
failure demand. This is work caused by a failure to do something, or do something
right, for the customer. Because failure demand takes time and attention away
from regular business, it's likely you'll see more failures in the future. This vicious
cycle drastically reduces the capability across the entire business.

In software delivery, we refer to failure demand as bug fixing, remediation, or
rework.

A case study at HP in The DevOps Handbook found Continuous Delivery
increased time spent on new features from 5% to 40%, and reduced development
costs around 40%. This needs discipline in detecting issues earlier in your
deployment pipeline where tests are faster and bugs are cheaper to find and fix.

As you reduce the failure demand, you increase your capacity for new work
without more hires or longer working hours. This gives you more capability to
deliver features without the drawbacks linked with scaling the team or working at
an unsustainable pace.

Octopus Deploy: The importance of Continuous Delivery 36

The people factor

DORA research found Continuous Delivery improves the way people feel about
work and their organization. Staff experiencing less deployment pain are less
likely to suffer burnout, and have a more positive view of the organization. The
technical capabilities contribute to a strong team identity and reduce friction.

High performers do less manual work than low performers. People don't enjoy
doing repetitive tasks, so it's likely work is more enjoyable when there are fewer
routine tasks to do. Google refers to this routine and repetitive work as toil.

Manual Work Low Performers High Performers

Configuration Management 46% 28%

Testing 49% 35%

Deployments 43% 26%

Change approval 59% 48%

People are also motivated by seeing their work in the hands of their customers
rather than checked into source control. Especially as features become more
valuable to users as a result of faster feedback cycles. When people stay on the
team longer, they keep essential knowledge, and you spend less time on
recruitment and on-boarding.

A DevOps trends survey7 commissioned by Atlassian found that DevOps
improved many aspects of software delivery performance:

61% of organizations increased quality.
49% had a faster time to market.
52% saw faster recovery times.
99% said DevOps had a positive impact.

https://www.atlassian.com/whitepapers/devops-survey-2020

Octopus Deploy: The importance of Continuous Delivery 37

A key survey finding was performance increases with DevOps experience. This is
also a finding of the State of Continuous Delivery report, which found higher
performance where there was more software development experience.

If you want to scale a team, there's a limit to how much change you can
realistically push per deployment. This means you must pay attention to a loosely
coupled architecture and increase deployment frequency to keep batches small.
To achieve a high deployment frequency, you need to automate more. This is
where Continuous Delivery becomes not only desirable but essential. Your ability
to add developers to your organization depends on the technical capabilities
linked to Continuous Delivery. Your deployment pipeline sets the pace of change
for your whole business.

You can still have manual approval steps, as long as the human is performing a
valuable task as part of the approval. Where possible, approvals should happen
automatically if the phase meets requirements. Each component should move
through the deployment pipeline without waiting for other components, otherwise
a problem in one component could stop all deployments. This is another reason
to target a loosely coupled architecture.

The deployment pipeline performance will set the pace for the team. If changes
can't progress any faster through the deployment pipeline, adding more team
members will have no effect on software delivery performance.

Octopus Deploy: The importance of Continuous Delivery 38

Return on investment

Google Cloud and DORA created a return-on-investment (ROI) model8 for
organizations that want to move from IT treated as a cost center to IT as a value-
driver for the business. The model factors in the four categories listed below:

1. Efficiency - reduction of non-value adding activities, such as rework and
failure demand

2. New features - Increasing time spent on new revenue-generating features
3. Faster time-to-resolve, decreased downtime, and reduced downtime-related

losses
4. Retention - high-performing teams are more than twice as likely to

recommend the organization as a great place to work.

One example shows the return on investment for DevOps can be ten times the
original investment with a short payback-term of one month.

If you focus only on cost reduction and ignore value-generating activity, you end
up in a commoditization race to the bottom, where your prices must get lower
over time. Value-generating activities maintain and increase your value to
customers, protecting your revenue.

https://cloud.google.com/resources/roi-of-devops-transformation-whitepaper

Octopus Deploy: The importance of Continuous Delivery 39

Case study

A case study reported in InfoQ9 explored Continuous Delivery adoption at a
company with 4000 employees and €6 billion turnover. They had 400 technical
team members in teams commonly of four or eight, who used a mix of
technology stacks (Java, Ruby, PHP, .NET). Here's a summary of the benefits and
challenges discovered in a study of the first 20 internal business applications that
adopted Continuous Delivery.

Benefits reported

Building the right product

Frequent releases let application development teams get user feedback
earlier, allowing more focus on useful features.
If they found a feature wasn't practical, they spent no further effort on it.

Accelerated time to market

Releases were more frequent and made available as soon as they were
ready.
Feature cycle times moved from months to just 2-5 days.

https://www.infoq.com/articles/cd-benefits-challenges/

Octopus Deploy: The importance of Continuous Delivery 40

Improved productivity and efficiency:

Significant time savings for developers, testers, and operations engineers
through automation.
Recovered 20% of time by making pre-live deployments a push-button
activity.
Live deployments went from days of work to a push-button activity.

Reliable releases

Risks associated with a release significantly decreased, and the release
process became more reliable.
Found and fixed issues with the deployment process in pre-live deployments.
Fewer changes included in each release, making it easier and faster to fix
problems.

Improved product quality

The number of open bugs and production incidents decreased significantly.

Improved customer satisfaction

Achieved a higher customer-satisfaction level.

Octopus Deploy: The importance of Continuous Delivery 41

Obstacles

Organizational challenges

The further your organization is from the intended design (the more divisions
involved), the greater the challenge.

Process challenges

Processes intended as quality gates or compliance requirements needed
review to assess impact on throughput or workflow.
If a team can deliver a feature in two days, but there is a two-week approval
step, you must elevate this as the key constraint to resolve.

Technical challenges

Attempting to create your own tools can be expensive and may not play to
your strengths.
Existing architecture may be challenging to bring into the deployment
pipeline.

Octopus Deploy: The importance of Continuous Delivery 42

Summary

There is a strong link between Continuous Delivery and DevOps adoption and
many organizational benefits. This relationship was tested using rigorous
statistical approaches from tens of thousands of survey responses.

The structural equation model shows seven technical capabilities are drivers for
Continuous Delivery. This is a significant predictor of the culture and performance
delivering commercial and non-commercial goals for an organization. This
software delivery method is the most thoroughly tested mechanism, and the best
for delivering software we know of so far.

Because the practices have an amplifying effect on each other, you need to adopt
them broadly. You also need to continually learn and improve based on the
feedback you get through the deployment pipeline.

We highlighted some key points to remember below:

Include everything needed to deliver software in your deployment pipeline.
Everything is a target for automation.
You should track security issues in the same place you track bugs and
features.
You don't have to get to 100% on day one. The process is one of continuous
improvement.
Make everything you learn available to the rest of the organization.
You should aim to improve both flow (left to right) and feedback (right to left)

Octopus Deploy: The importance of Continuous Delivery 43

Continuous Delivery benefits include:

Faster feedback
Lower risk
Less rework and remediation
More time on new work
Lower stress and higher motivation
Organizational success
Empowering teams
Deployment flexibility

Thank you for reading this white paper on the importance of Continuous Delivery.

You can find more white papers on octopus.com10

https://octopus.com/resource-center

Octopus Deploy: The importance of Continuous Delivery 44

References

1. https://download.octopusdeploy.com/files/whitepaper-automated-
deployment-octopus-deploy.pdf

2. https://www.devops-research.com/models.html
3. https://www.databaserefactoring.com/
4. https://octopus.com/blog/ten-pillars-of-pragmatic-deployments
5. https://octopus.com/blog/common-deployment-patterns-and-how-to-set-

them-up-in-octopus
6. https://cd.foundation/reports/
7. https://www.atlassian.com/whitepapers/devops-survey-2020
8. https://cloud.google.com/resources/roi-of-devops-transformation-

whitepaper
9. https://www.infoq.com/articles/cd-benefits-challenges/

10. https://octopus.com/resource-center

https://download.octopusdeploy.com/files/whitepaper-automated-deployment-octopus-deploy.pdf
https://www.devops-research.com/models.html
https://www.databaserefactoring.com/
https://octopus.com/blog/ten-pillars-of-pragmatic-deployments
https://octopus.com/blog/common-deployment-patterns-and-how-to-set-them-up-in-octopus
https://cd.foundation/reports/
https://www.atlassian.com/whitepapers/devops-survey-2020
https://cloud.google.com/resources/roi-of-devops-transformation-whitepaper
https://www.infoq.com/articles/cd-benefits-challenges/
https://octopus.com/resource-center

Octopus Deploy: The importance of Continuous Delivery 45

Further reading

To find out more about Continuous Delivery, the following titles by Jez Humble
and Dave Farley provide a canonical reference:

Continuous Delivery. 2011. Humble, Farley.
Continuous Delivery Pipelines. 2021. Farley.

For DevOps, there are two essential reads:

Accelerate. 2018. Forsgren, Humble, Kim.
The DevOps Handbook (Second Edition). 2021. Kim, Humble, Debois, Willis.

If you enjoy the business novel format, the following books are a great way to
picture the concepts:

The Goal. 1984. Goldratt.
The Phoenix Project. 2013. Kim. Behr.
The Unicorn Project. 2019. Kim.

Octopus Deploy
Level 4, 199 Grey St
South Brisbane, QLD 4101, Australia

� Email: sales@octopus.com

� Phone: +1 512-823-0256

� octopus.com

https://octopus.com/
mailto:sales@octopus.com

